@inproceedings{asan2024calibrating,title={Calibrating Bayesian UNet++ for Sub-Seasonal Forecasting},author={Asan, B. and Akgül, A. and Unal, A. and Kandemir, M. and Unal, G.},booktitle={Tackling Climate Change with Machine Learning at ICLR 2024},year={2024},url={https://arxiv.org/abs/2403.16612},}
L4DC
Continual Learning of Multi-modal Dynamics with External Memory
A. Akgül , G. Unal , and M. Kandemir
In Proceedings of The 6th Annual Learning for Dynamics and Control Conference , 2024
@inproceedings{akgul2024cddp,title={Continual Learning of Multi-modal Dynamics with External Memory},author={Akgül, A. and Unal, G. and Kandemir, M.},booktitle={Proceedings of The 6th Annual Learning for Dynamics and Control Conference},year={2024},url={https://arxiv.org/abs/2203.00936},}
IEEE FG
epsilon-Mesh Attack: A Surface-based Adversarial Point Cloud Attack for Facial Expression Recognition
Batuhan Cengiz , Mert Gulsen , Yusuf H Sahin , and 1 more author
@article{cengiz2024epsilon,title={epsilon-Mesh Attack: A Surface-based Adversarial Point Cloud Attack for Facial Expression Recognition},author={Cengiz, Batuhan and Gulsen, Mert and Sahin, Yusuf H and Unal, Gozde},booktitle={IEEE International Conference on Automatic Face and Gesture Recognition},year={2024},url={https://arxiv.org/abs/2403.06661v1},}
ACML
Protodiffusion: Classifier-free diffusion guidance with prototype learning
Gulcin Baykal , Halil Faruk Karagoz , Taha Binhuraib , and 1 more author
@inproceedings{baykal2024protodiffusion,title={Protodiffusion: Classifier-free diffusion guidance with prototype learning},author={Baykal, Gulcin and Karagoz, Halil Faruk and Binhuraib, Taha and Unal, Gozde},booktitle={Asian Conference on Machine Learning},year={2024},url={https://proceedings.mlr.press/v222/baykal24a.html},}
ICIP
PCLD: Point Cloud Layerwise Diffusion for Adversarial Purification
Mert Gulsen , Batuhan Cengiz , Yusuf H Sahin , and 1 more author
In IEEE International Conference on Image Processing , 2024
@inproceedings{gulsen2024pcld,title={PCLD: Point Cloud Layerwise Diffusion for Adversarial Purification},author={Gulsen, Mert and Cengiz, Batuhan and Sahin, Yusuf H and Unal, Gozde},booktitle={IEEE International Conference on Image Processing},year={2024},url={https://arxiv.org/abs/2403.06698},}
ReFIP
A Study Regarding Machine Unlearning on Facial Attribute Data
Emircan Gundogdu , Altay Unal , and Gozde Unal
In International Workshop on Responsible Face Image Processing , 2024
@inproceedings{gundogdustudy,title={A Study Regarding Machine Unlearning on Facial Attribute Data},author={Gundogdu, Emircan and Unal, Altay and Unal, Gozde},booktitle={International Workshop on Responsible Face Image Processing},year={2024},url={https://brosdocs.net/fg2024/W029.pdf},}
2023
2023
TMLR
Meta Continual Learning on Graphs with Experience Replay
A. Unal , A. Akgül , M. Kandemir , and 1 more author
@article{unal2023meta,title={Meta Continual Learning on Graphs with Experience Replay},author={Unal, A. and Akg{\"u}l, A. and Kandemir, M. and Unal, G.},booktitle={Transactions on Machine Learning Research},year={2023},url={https://openreview.net/forum?id=8tnrh56P5W},}
arXiv
Textile Pattern Generation Using Diffusion Models
Halil Faruk Karagoz , Gulcin Baykal , Irem Arikan Eksi , and 1 more author
@article{karagoz2023textile,title={Textile Pattern Generation Using Diffusion Models},author={Karagoz, Halil Faruk and Baykal, Gulcin and Eksi, Irem Arikan and Unal, Gozde},booktitle={arXiv Preprint},year={2023},url={https://arxiv.org/abs/2304.00520},}
arXiv
EdVAE: Mitigating Codebook Collapse with Evidential Discrete Variational Autoencoders
Codebook collapse is a common problem in training deep generative models with discrete representation spaces like Vector Quantized Variational Autoencoders (VQ-VAEs). We observe that the same problem arises for the alternatively designed discrete variational autoencoders (dVAEs) whose encoder directly learns a distribution over the codebook embeddings to represent the data. We hypothesize that using the softmax function to obtain a probability distribution causes the codebook collapse by assigning overconfident probabilities to the best matching codebook elements. In this paper, we propose a novel way to incorporate evidential deep learning (EDL) instead of softmax to combat the codebook collapse problem of dVAE. We evidentially monitor the significance of attaining the probability distribution over the codebook embeddings, in contrast to softmax usage. Our experiments using various datasets show that our model, called EdVAE, mitigates codebook collapse while improving the reconstruction performance, and enhances the codebook usage compared to dVAE and VQ-VAE based models.
@article{baykal2023edvae,title={EdVAE: Mitigating Codebook Collapse with Evidential Discrete Variational Autoencoders},author={Baykal, Gulcin and Kandemir, Melih and Unal, Gozde},booktitle={arXiv Preprint},year={2023},url={https://arxiv.org/abs/2310.05718v2},}
MVA
TinyPedSeg: A Tiny Pedestrian Segmentation Benchmark for Top-Down Drone Images
Yusuf H Sahin , Elvin Abdinli , M Arda Aydın , and 1 more author
In International Conference on Machine Vision Applications , 2023
@inproceedings{sahin2023tinypedseg,title={TinyPedSeg: A Tiny Pedestrian Segmentation Benchmark for Top-Down Drone Images},author={Sahin, Yusuf H and Abdinli, Elvin and Ayd{\i}n, M Arda and Unal, Gozde},booktitle={International Conference on Machine Vision Applications},year={2023},url={https://ieeexplore.ieee.org/abstract/document/10215829},}
MDPI
ALReg: Registration of 3D Point Clouds Using Active Learning
Yusuf Huseyin Sahin , Oguzhan Karabacak , Melih Kandemir , and 1 more author
@article{sahin2023alreg,title={ALReg: Registration of 3D Point Clouds Using Active Learning},author={Sahin, Yusuf Huseyin and Karabacak, Oguzhan and Kandemir, Melih and Unal, Gozde},booktitle={MDPI Applied Sciences},year={2023},url={https://www.mdpi.com/2076-3417/13/13/7422},}
arXiv
GaussianMLR: Learning Implicit Class Significance via Calibrated Multi-Label Ranking
V Bugra Yesilkaynak , Emine Dari , Alican Mertan , and 1 more author
@article{yesilkaynak2023gaussianmlr,title={GaussianMLR: Learning Implicit Class Significance via Calibrated Multi-Label Ranking},author={Yesilkaynak, V Bugra and Dari, Emine and Mertan, Alican and Unal, Gozde},booktitle={arXiv Preprint},year={2023},url={https://arxiv.org/abs/2303.03907},}
2022
2022
NeuRIPS
How to combine variational bayesian networks in federated learning
Atahan Ozer , Kadir Burak Buldu , Abdullah Akgül , and 1 more author
@article{ozer2022combine,title={How to combine variational bayesian networks in federated learning},author={Ozer, Atahan and Buldu, Kadir Burak and Akg{\"u}l, Abdullah and Unal, Gozde},booktitle={International Workshop on Federated Learning: Recent Advances and New Challenges in Conjunction with NeurIPS 2022 (FL-NeurIPS'22)},year={2022},url={https://arxiv.org/abs/2206.10897},}
ICPRAI
UGQE: Uncertainty Guided Query Expansion
Firat Oncel , Mehmet Aygün , Gulcin Baykal , and 1 more author
In International Conference on Pattern Recognition and Artificial Intelligence , 2022
@inproceedings{oncel2022ugqe,title={UGQE: Uncertainty Guided Query Expansion},author={Oncel, Firat and Ayg{\"u}n, Mehmet and Baykal, Gulcin and Unal, Gozde},booktitle={International Conference on Pattern Recognition and Artificial Intelligence},year={2022},url={https://link.springer.com/chapter/10.1007/978-3-031-09037-0_10},}
CG
ODFNet: Using orientation distribution functions to characterize 3D point clouds
@article{sahin2022odfnet,title={ODFNet: Using orientation distribution functions to characterize 3D point clouds},author={Sahin, Yusuf H and Mertan, Alican and Unal, Gozde},booktitle={Computer and Graphics},year={2022},url={https://www.sciencedirect.com/science/article/pii/S0097849321001801},}
@article{mertan2022single,title={Single image depth estimation: An overview},author={Mertan, Alican and Duff, Damien Jade and Unal, Gozde},booktitle={Digital Signal Processing},year={2022},url={https://www.sciencedirect.com/science/article/pii/S1051200422000586},}
PR
Exploring deshufflegans in self-supervised generative adversarial networks
@article{baykal2022exploring,title={Exploring deshufflegans in self-supervised generative adversarial networks},author={Baykal, Gulcin and Ozcelik, Furkan and Unal, Gozde},booktitle={Pattern Recognition},year={2022},url={https://www.sciencedirect.com/science/article/pii/S0031320321004167},}
ICLR
Evidential turing processes
Melih Kandemir , Abdullah Akgül , Manuel Haussmann , and 1 more author
@article{kandemir2021evidential,title={Evidential turing processes},author={Kandemir, Melih and Akg{\"u}l, Abdullah and Haussmann, Manuel and Unal, Gozde},booktitle={International Conference on Learning Representations},year={2022},url={https://arxiv.org/abs/2106.01216},}
2021
2021
PRIME
Uncertainty-Based Dynamic Graph Neighborhoods for Medical Segmentation
Ufuk Demir , Atahan Ozer , Yusuf H Sahin , and 1 more author
In International Workshop on PRedictive Intelligence In MEdicine , 2021
@inproceedings{demir2021uncertainty,title={Uncertainty-Based Dynamic Graph Neighborhoods for Medical Segmentation},author={Demir, Ufuk and Ozer, Atahan and Sahin, Yusuf H and Unal, Gozde},booktitle={International Workshop on PRedictive Intelligence In MEdicine},year={2021},url={https://link.springer.com/chapter/10.1007/978-3-030-87602-9_24},}